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Vision-Aided Multi-UAV Autonomous Flocking in
GPS-Denied Environment

Yazhe Tang , Yuchao Hu, Jinqiang Cui, Fang Liao, Mingjie Lao, Feng Lin, and Rodney S. H. Teo

Abstract—This paper presents a sophisticated vision-
aided flocking system for unmanned aerial vehicles (UAVs),
which is able to operate in GPS-denied unknown environ-
ments for exploring and searching missions, and also able
to adopt two types of vision sensors, day and thermal cam-
eras, to measure relative motion between UAVs in differ-
ent lighting conditions without using wireless communi-
cation. In order to realize robust vision-aided flocking, an
integrated framework of tracking-learning-detection on the
basis of multifeature coded correlation filter has been devel-
oped. To achieve long-term tracking, a redetector is trained
online to adaptively reinitialize target for global sensing.
An advanced flocking strategy is developed to address the
autonomous multi-UAVs’ cooperative flight. Light detection
and ranging (LiDAR)-based navigation modules are devel-
oped for autonomous localization, mapping, and obstacle
avoidance. Flight experiments of a team of UAVs have been
conducted to verify the performance of this flocking system
in a GPS-denied environment. The extensive experiments
validate the robustness of the proposed vision algorithms
in challenging scenarios.

Index Terms—Flocking, unmanned system, visual
sensing.

I. INTRODUCTION

THIS paper is inspired by flocking behaviors in nature via
vision exploring in obstacle-rich environments. Different

from conventional systems, this paper adopts a day camera and
a thermal camera to conduct flocking using visual sensing in
various illumination with autonomous navigation capabilities.
Naturally, flocking performs a collective behavior that individ-
uals use limited environmental information organizing in an
ordered motion, so that they remain together as a group. This
phenomenon widely exists in the nature [1] exhibited by many
living beings such as fish, insects, and birds.

Flocking behavior was first simulated on a computer in 1987
by Reynolds [2] with an artificial life program via three heuris-
tic rules, called boids, which only considers obstacle-free envi-
ronments. Many variations of these rules considering obstacle
avoidance and goal seeking have been investigated during these
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years. In addition, Graph theory has been utilized on alignment
topics [3], artificial potentials [4] for obstacle avoidance as well
as leader–follower schemes for goal searching [5].

Current flocking strategies can be roughly divided into two
classes: centralized and decentralized. Centralized strategies use
a central unit to organize behaviors of flocking systems [6]. They
may become technically unfeasible for large-scale systems. De-
centralized strategies are built based on the interactions between
unmanned aerial vehicles (UAVs), which are mostly inspired
by the evidence of biological systems or natural phenomena.
As a typical decentralized strategy, the leader–follower-based
method [7] considers some team members as leaders, and some
act as followers. But each follower should have at least one
leader, and some team members may act as both leaders and
followers. This hierarchical architecture can simplify the flock-
ing control to an individual motion planning. In a string or chain
structure, each UAV follows one leader which is ahead of it [8].
The advantages of leader–follower methods are that the number
of UAVs in a flocking group is scalable and the communication
load is low.

To realize the flocking in radio silent situation, we propose to
use passive vision sensing to achieve relative distance measure-
ment in flocking. Vision sensing is widely used in autonomous
systems due to the low cost of camera sensors and the rich in-
formation. Zhao et al. [9] presented a vision-based autonomous
cargo transfer system using a UAV platform. They employed
an on-board camera to detect and track the ellipse for task op-
eration. One drawback is that it requires a standard shape as
an auxiliary landmark for object detection and it is hard to be
extended to general uncontrolled natural environments. Mueller
et al. [10] designed an aerial tracking system for a UAV to track
a ground moving target. A relay tracking scheme is designed
based on a handover strategy for persistent tracking. The ex-
periment shows that the persistent tracking is achievable only
in simple ground background, and cluttered background may
degrade its performance. In [11], tracking-learning-detection
(TLD) [12] is used for target tracking from a UAV and achieves
a good result in the short term. Their method only tracks a per-
son at a height of 1.5 m but does not address common tracking
problems such as large perspective change and scale variation.
In addition, a tracker is proposed in [13] on the basis of multiple
instance learning (MIL) [14] to track the aircraft/intruder in the
sky from a fixed-wing UAV. They present a model-free aircraft
tracking that can operate in an illumination changing environ-
ment. However, the tracking background is a clean sky, which is
very ideal for target tracking. Recently, a tracking algorithm for
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Fig. 1. Vision-aided flocking system exploring at unknown
environment.

sense-and-avoid maneuvers by utilizing a combination of fea-
ture point tracking and morphological filters has been presented
in [15].

The aforementioned papers present representative systems
for vision-aided UAV tracking applications. Those vision sens-
ing algorithms can be divided into model-based and model-
free ones. The model-based tracking systems require auxiliary
marker present for geometry mapping [16]. These methods can
achieve accurate tracking results. However, markers may not
be available in general environments. In contrast, model-free
methods provide much more flexible and noninvasive solutions,
which are very useful for practical applications. In this paper, we
focus on a markerless vision sensing algorithm for concealment
concern.

To achieve robust vision sensing for the proposed autonomous
flocking system, we design a discriminative tracking algorithm
in a closed-loop framework for tracking-learning-detection,
which is applicable to both thermal and visible cameras for
day and night operation. Taking into account the robust and
real-time performance of the system, powerful and computa-
tional efficiency algorithms are essential for flocking. We em-
ploy a correlation filter to exploit multilevel-oriented gradient
features for visual sensing. To achieve the long-term tracking,
the correlation filter is trained online to adaptively reinitial-
ize the target for the purpose of global sensing. The filter can
wisely update the discriminative model based on the tracking
quality, which may effectively prevent corruption of the tracker
by the accumulative error. With a reliable visual feedback,
a sequence of waypoints can be estimated for path planning
implementation.

Fig. 1 illustrates the proposed vision-aided leader–follower
flocking system for UAV cooperative flight, which is used as
a core technology to aid a UAV searching system to maintain
basic cooperative capability in GPS-denied and radio-silent en-
vironments. LiDAR sensor is equipped to provide point cloud
information for the UAV to accurately sense the surrounding
environment, which facilitates the obstacle avoidance and navi-
gation for autonomous flights. In this system, the first UAV in the
team serves as the team leader. It generates an online path from
its current position to a given destination by using an improved
A* search algorithm. The rest UAVs are called followers. The
goal for each follower is selected from the trajectory points of

its leader UAV that is just in front of it with a predefined safety
distance away from the leader. For concealment concerns, com-
munication has been minimized during the flocking, which is
allowed only when the front UAV is completely occluded for a
certain period. The system is expected to work in unknown envi-
ronments with different lighting conditions. Therefore, both day
and thermal cameras have been employed, and only the suited
one will be used in accordance to environment illumination. To
the best of our knowledge, this work is the first attempt to im-
plement vision-aided autonomous UAV flocking in GPS-denied
environments. Existing UAV flocking systems [17] normally
adopt fixed-wing UAV flying at a high altitude with clean sky
background. While our system operates at a low altitude in com-
plicated environments, which implicitly increases the difficulty
of tracking.

The remainder of this paper is organized as follows. Section II
summarizes the system logic and flight control. Section III elab-
orates the correlation filter based vision sensing algorithm in-
cluding tracking, detection, and learning scheme for the long-
term visual tracking. Section IV introduces the autonomous
navigation system. Section V presents real flight experiments to
verify the proposed flocking system. Finally, we conclude this
paper in Section VI.

II. FRAMEWORK OF THE FLOCKING SYSTEM

This paper depicts a search scenario that a flock of UAVs
operates in an unknown and obstacle-rich environment with a
tandem formation, which has three basic requirements: 1) each
individual UAV can avoid obstacles; 2) maintain a team via vi-
sion of the follower’s camera; and 3) reach a goal by following
the team leader who knows the destination. Each UAV is an
intelligent agent in an autonomous fashion for task operation.
In the navigation module, LiDAR has been equipped for UAVs
to sense the surrounding environment for navigation and ob-
stacle avoidance. On-board cameras have been installed for the
followers to track their leaders’ waypoints that are employed to
generate their trajectory reference.

In the flocking, the UAV with a given destination is named as
a team leader and other UAVs are named as followers though
they may be a corresponding leader of the following UAV. As
shown in Fig. 1, a team with three UAVs has one leader which
flies in the front of the team, and the rest of the two UAVs serve
as followers in this team. For example, follower #1 follows the
team leader’s step and it also serves as the leader of follower
#2 in the meantime. All the UAVs are equipped with an LiDAR
sensor and able to navigate in unknown environments. Besides
the LiDAR sensor, each follower UAV is equipped with an on-
board camera, thus it is able to identify its corresponding leader
for target following.

Due to limited communication among UAVs, the followers
estimate their corresponding leaders’ relative position by vision
sensing. The camera module consists of a normal and a thermal
camera. The working camera will be selected based on the
ambient light condition, for instance, day and night. As the
leader does not have any information about its followers, its
acceleration has to be constrained, otherwise the followers will
lag behind it and lose their leaders in each camera view, and
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Fig. 2. Autonomous system structure with leader-and-follower logic of
flocking UAVs.

will not be able to maintain the flocking. Moreover, since the
leader may change direction and move away from followers in
the time between two consecutive looks, the follower’s heading
is controlled such that it always points to the leader.

As illustrated in Fig. 2, the basic navigation and obstacle de-
tection capabilities for each UAV have been provided by the
aforementioned LiDAR-based simultaneous localization and
mapping (SLAM). The leader and follower UAVs will generate
high-level commands like trajectory following and vision-based
target tracking, respectively. Based on the above navigation in-
formation, obstacle map and high-level commands, the path
planning module will generate a collision-free path for low-level
trajectory generation and flight control to realize autonomous
flight.

During the flocking, the team leader runs a motion planning
algorithm [18] to fly to a predefined destination along a collision-
free trajectory. The followers estimate the relative position to
their corresponding leader via vision. The follower records the
trajectory points of the leader and tracks the point in this tra-
jectory, which has a predefined safety distance to the leader to
ensure cohesion and safe separation of UAVs. Based on the se-
lected point, the motion planning generates a new collision-free
reference trajectory for the follower tracking. It is noted that the
goal position of the follower varies as its leader moves. The fol-
lowers will regularly replan their paths online to avoid obstacles
in their trajectories. The advantage of this flocking method is to
ensure that the followers track their targets and simultaneously
achieve obstacle avoidance even when the leader’s position is
temporarily unknown.

III. VISUAL SENSING

In order to achieve robust and fast tracking, a markerless
vision sensing solution is developed for this flocking system.
Although, nowadays, lots of efforts have been made for vi-
sual tracking in academia, most of them are still hard to work
in real applications due to practical constraints, e.g., limited

computational resources and fast varying lighting conditions. As
a popular technology in signal processing, a correlation filter has
been extended to computer vision societies and also achieved
great success in visual tracking applications. Formulated as a
discriminative tracker, a correlation tracker achieved very im-
pressive performance in terms of accuracy and efficiency. This
paper designs a tracking system on the basis of minimum out-
put sum of squared error (MOSSE) [19] since it provides the
highest speed with good performance. Different from MOSSE
using a single channel of features, the proposed algorithm em-
ploys multilevel-oriented gradient features for robust tracking
in thermal and visible images.

A. Discriminative Tracking

A correlation filter models appearance of a target using a fil-
ter h trained by a number of grayscale image patches fi, i =
1, . . . , t with M×N pixels centered around the target. The
tracker considers all cyclic shift xm,n , m = 0, . . . ,M − 1, n =
0, . . . , N − 1, as training examples for the classifier [20]. These
are labeled with desired Gaussian functions yi, i = 1, . . . , t, so
that yi(m,n) is the label for x(m,n). A feature map is consid-
ered for a signal representation. The single channel correlation
filter can then be expressed in a spatial domain by solving a
ridge regression problem:

E(h) =
1
2

t∑

i=1

‖yi − h � fi‖22 +
λ

2
‖h‖22 (1)

where functions fi, gi , and h are all of size M ×N . � denotes
a circular operator, λ is a regularization parameter (λ ≥ 0), and
h is the trained filter for classification.

The filter in (1) provides very limited performance. To
improve robustness, discriminative correlation filters can be
extended to use multidimensional features. We employ a
k-dimensional feature map representation of a signal, such as
a two-dimensional (2-D) image, and denote feature dimension
number l ∈ 1, . . . , k of an image patch fi by f l . A multichannel
objective function in spatial domain is given by

E(h) =
1
2

t∑

i=1

‖yi −
k∑

l=1

hl � f l
i ‖22 +

λ

2

k∑

l=1

‖hl‖22 (2)

where f l and hl refer to the lth channel of a vectorized image
and filter, respectively. The correlation image yi is synthetically
designed as a desired map with bright peak at the target’s center.
For translational estimation, we define yi as a 2-D Gaussian
distribution which is centered at the target coordinate xi with a
radius σ

yi = e
−

(x− xi)2

σ2 . (3)

Solving this multichannel form in the spatial domain is even
more intractable. To reduce the problem complexity, we trans-
form the spatial convolution to the element-wise production in
frequency domain and solve this equation as

H =
∑k

l=1 F l�Y l∗

λ +
∑k

l=1 F l∗ � F l
(4)
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where capital letters denote discrete Fourier transforms of corre-
sponding functions. For instance, H and Y are the Fourier trans-
forms for filter h and map y, respectively. � denotes element-
wise production and ∗ is complex conjugate. The tracking is
carried out on an image patch z in a new frame with a search
window size M ×N by computing the response

γ = F−1(F �H∗) (5)

where γ is a response map andF is Fourier transform. To accom-
modate target variation, the tracker should have the capability
of online learning. We simplify the numerator and denominator
of filter H in (4) as At and Bt , respectively. The updating of At

and Bt at time t is
{

At = (1− η)At−1 + η
∑k

l=1 F l
t−1 � Y l∗

t−1

Bt = (1− η)Bt−1 + η
∑k

l=1 F l∗
t−1 � F l

t−1

(6)

where η is a learning rate parameter. The final response γ of
the filter in the translation level with an observation z can be
computed as

γt = F−1

{∑k
l=1 A∗t−1 � Zl

t

Bt−1 + λ

}
. (7)

For scale estimation, the proposed algorithm formulates scale
fitting using a one-dimensional filter. We construct a scale pyra-
mid at the estimated location of translational response. Let
V × U denote the target size in a frame and S is the num-
ber of the scale level n ∈ {�−S−1

2 �, �−
S−3

2 �, . . . , �
S−1

2 �}. The
tracker extracts an image patch In with size of anV × anU cen-
tered around the estimated location of the translational tracker.
a is a scaling factor. We unify all patches in a pyramid with size
V × U and construct the feature pyramid. The training sample
is then set to be a rectangular cuboid of the feature pyramid.
The cuboid is of size V × U × S and centered at the estimated
location of the target. We update the scale filter holistically to
capture the scale variation of the target. The scale filter is also
online learning, refer to (5). A threshold Ts for the scale is set
and the scale filter updates when the max response γs is bigger
than Ts .

B. Visual Modules Integration

The proposed correlation filter is adopted for discriminative
tracking by distinguishing the target from the background. Sim-
ilarly, it can be extended for global detection due to its inherent
property of classification. On the basis of theoretic foundation
above, we adopt a correlation filter for visual detection. Since
our system requires fully automatic initialization, the initial de-
tector should be trained offline using manually collected images
annotated in classifier formulation. To achieve robust target rep-
resentation and computational efficiency, we employ a feature
coding scheme with five levels of oriented gradients for classi-
fier training [21]. Compared to the initial detector, the redetector
is able to adapt to appearance variation of the target by using
an online learned classifier. To ensure a correct updating, only
images with high confidence will be trusted for the redetector
training during flight.

Fig. 3 shows the proposed visual sensing framework, includ-
ing detection, tracking, and redetection modules. A detector Hd

Fig. 3. Sketch map of visual detection and tracking for UAV flocking.

Fig. 4. Confidence response in thermal vision with (a) abrupt motion
and (b) occlusion.

will be activated by automatic initialization once a target enters
the camera view. As described above, the tracking algorithm
consists of translation and scale steps. The initialized target
is input to the tracker by extracting multilevel-oriented gradi-
ent features (33-levels) [22] for translation estimation first. The
peak-to-sidelobe ratio (PSR) is adopted to measure the strength

of correlation response. PSR is defined as
ymax − μ

σ
, where

ymax is the peak value, and μ and σ are the means and standard
deviations of the sidelobe, respectively. It is used as a metric to
evaluate the similarity between the target and those candidates.

A translational filter Ht is updated when PSR is larger than
a predefined threshold Tt , which is defined for updating rede-
tector Hrd . If PSR is larger than another threshold Tm , it means
that the target is found by the translational filter. Comparing to
Ht , the learning scheme of the redetector is much more conser-
vative because incorrect updating may easily corrupt the filter
and result in tracking failure. Therefore, relationship between
the thresholds is Td > Tt > Tm . A scale pyramid is built for
scale estimation after the translational output. The final out-
put (xt, yt , wt , ht), consisting of center coordinates, width and
height of the target, is transformed into a spatial coordinate for
motion planning processing. The detailed procedure is given in
the pseudo code in Algorithm 1.

Two tests using thermal vision are conducted to verify the
effectiveness of the proposed vision framework. The designed
tests include abrupt motion and occlusion, which will activate
the redetection module for online reinitialization. The first sce-
nario presents a UAV flying in a forest with an abrupt motion
which is caused by shutter effect of the thermal camera. The
abrupt motion results in tracking failure at Frame #152 (see
Fig. 5). The confidence PSR reflects tracking quality. In the
test, it drops to a low level at Frame #152 and the target is
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Algorithm 1: Framework of Visual Sensing.
1: Visual Module← Image Streaming Input
2: Initialization
3: x0 ← target state (x0 , y0 , w0 , h0) by detector Hd

4: FlagHr d
= 0, local patch A(xt), Feature map F

5: for t = 1 : N do
6: if FlagHr d

= 1 then
7: xt ← Hrd , FlagHr d

← 0, F (A(xt))
8: else
9: Extracting F (A(xt−1))

10: end if
11: Translational Estimation
12: if t = 1 or FlagHr d

= 1 then
13: Ht , Hs ← 4 for filters training
14: else
15: γt ← 7 for response map generation
16: Computing confidence psrt

17: end if
18: if psrt > Tm then
19: Output Translation results in (xt, yt , wt−1 , ht−1)
20: Go to Scale Estimation
21: else
22: Tracking failure, and FlagHr d

= 1
23: Continue
24: end if
25: Updating filter Ht ← 6 if psrt > Tt

26: Updating Re-detect filter Hrd ← 6 if psrt > Td

27: Scale Estimation
28: Formulating scale pyramid and estimating scale

response γs

29: Updating filter Hs if psrs > Ts

30: Output scale results if psrs > To

31: Output Tracking result xt in (xt, yt , wt , ht)
32: end for

lost. The redetector is then triggered [see Fig. 4(a)] for target
detection and PSR returns to a high level after the target is recap-
tured successfully. Second, we present test scenarios involving
two occlusions that occurs at around Frame #112 and #153. As
shown in Fig. 4(b), PSR of the tracker declines and maintains
a low level during the occlusion but it can return to a normal
value once the target is redetected after occlusion. Due to page
limitations, we only show image samples at the first occlusion
in Fig. 5. It is observed that PSR can quickly return to a stable
level after a successful redetection. That is because the online
trained filter of the tracker is retained after the target loses. It
records the target information during tracking process, and dou-
ble check the correctness of results generated by the redetector
before the retracking.

C. Waypoint Generation

The tracking results will output the target status including its
center coordinate and size in the image. Using these parameters
and the known physical size of the target, we can compute its
three-dimensional (3-D) location in the camera coordinate with
distance and attitude angle, given the camera intrinsic parame-

Fig. 5. Image samples in thermal vision with abrupt motion (first row)
and occlusion (second row). Tracking result is marked in red and detec-
tion result is given in yellow.

Fig. 6. (a) Image geometry for distance estimation. (b) Waypoint
generation.

ters. We need to transform the image coordinate with pixel unit
to the camera plane. As shown in Fig. 6(a), the target has phys-
ical size L and image with size of l. According to the triangle

property, we have the relationship of
d

L
=

f

l
, where d is the

distance between the camera and the target, and f indicates the
focal length. It can be observed that the distance d is inversely
proportional to the size l in image plane. Based on this relation,
d is calculable since L and f are given and l is measured in an
image plane. For attitude angle, it includes angle in elevation
and azimuth direction in spatial. As shown in a 2-D geometry

map in Fig. 6(a), attitude angle is θ = arctan
qc

f
.

With the measured distance and attitude of the tracked target,
its spatial coordinate can be computed. As shown in Fig. 6(b),
tracking results transform to the waypoints for trajectory gener-
ation. It should be noted that the system adopts discriminative-
based tracker for tracking due to its robust adaption of target’s
appearance changing. Because of the relative motion of the tar-
get to the camera, it is hard to keep a consistent view of the
target, which results in target’s appearance variation. Therefore,
it is difficult to estimate an accurate pose of the target in spatial.
However, our tracker provides a robust target sensing which can
guide the follower flying to the target. An approximate estima-
tion of waypoints is acceptable for our autonomous flocking
system.

IV. NAVIGATION SYSTEM

A. Localization and Mapping

To realize autonomous flight in GPS-denied environments, a
UAV should be able to sense the surrounding environment using
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Fig. 7. Local occupancy grid map and global map.

on-board sensors. In this flocking system, we install a LiDAR
for each individual UAV to sense the surrounding information
for localization, map generation, and obstacle avoidance. Since
our flocking system is designed to operate in cluttered envi-
ronments, like urban and forest, a feature-based 2-D SLAM
algorithm is implemented [23]. The basic ideas can be summa-
rized as: 1) filter out long straight lines, which may be ground or
wall in urban environments; 2) extract ellipses of tree trunks in
forest and estimate their position and size in every scanning; 3)
match scans based on a nearest neighbor algorithm, also the size
of ellipses will be considered; 4) estimate UAV pose based on
the scan to scan transformation; 5) build a pose graph based
on matching results and use the sliding window technology to
formulate a local graph instead of a global one due to speed
consideration; and 6) use the G2O library to optimize the pose
graph. It is worth noting that the LiDAR is fixed on UAVs with-
out a stabilizer. Our feature-based SLAM algorithm can handle
the small body slope.

The point clouds provided by the LiDAR are employed to
generate a 3-D occupancy grid map centered in the UAV, which
is divided evenly into cubes to represent the environment. Each
cube can be labeled in two statuses: occupied or unoccupied.
The occupied cubes and their surrounding area will be blocked
for flight in order to keep a safe motion space. Only the rest
unoccupied area can be used for path planning.

The explored environment is assumed unknown and the com-
putational load of the motion planning will increase with the size
of the map. For real-time operation, a local grid map is devel-
oped on the basis of measured data as shown in Fig. 7. A sensing
area with fixed size centered at the UAV is represented by the
occupancy grid map. The rest of area outside the local map is
represented by unoccupied spaces. The local zone moves with
the UAV and its size depends on the sensing range of LiDAR.
The resolution of the occupancy grid map is a tradeoff between
the accuracy of environment representation, and computational
resources of the UAV.

B. Motion Planning

Motion planning is important for autonomous systems. We
adopt an online motion planning method [18] for UAV explo-
ration, which is able to generate a collision-free path and trajec-
tory in real time. The online path planning employs an improved

Fig. 8. (a) Platform of quadrotor UAV. (b) Flight scenario of flocking.

A* searching algorithm to find a collision-free path from a start
point to a destination point on the local grid map. Since the
A* algorithm works on the local grid map which may change
during the movement of the UAV, the generated path may not
achieve the global minimum, but its efficiency can be improved
significantly.

The path planning module does not consider the kinematic
model of the UAV. Therefore, online trajectory generation is
necessary to bridge the high-level path planning with the low-
level motion control of the UAV. We employ Reflexxes Type IV
Motion Library [24] to generate 3-D trajectories for UAVs. The
trajectory generator is able to compute an entire time-optimal
trajectory from an arbitrary initial state of motion to a given
target subject to velocity and acceleration limitations within
1 ms. As the Reflexxes trajectory generator does not consider
obstacle avoidance and it is open loop, the generated trajectory
has a chance to cause collision. It is necessary to check collision
of the trajectory. A local target generator is adopted to perform
trajectory collision checking, which is an intermediate element
between the path planning and the trajectory generator. The
online path planning and trajectory generation run in 10 and
50 Hz, respectively, since the online path planning requires more
computational resource than that of the trajectory generator.

V. EXPERIMENTS

To verify the effectiveness of the proposed flocking system,
flight experiments have been conducted by using in-house-built
quadrotor UAVs, which can fly about 15 min with 1.5 Kg extra
payload by using an 8000 mAh LiPo battery. It is equipped with
an LiDAR sensor: Hokuyo UTM-30LX [see Fig. 8(a)], which
can provide 0.1–30 m measurement range, 270◦ sensing angle,
and 40 Hz scanning rate. The drone is able to use two types of
vision sensors: an Optirs PI450 thermal camera and a PointGrey
BFLY-PGE-12A2C-CS day camera.

The UAV has a customized flight control computer and an
AscTec Mastermind mission computer. The flight control com-
puter has been used to perform low-level feedback control and
trajectory tracking. The mission computer is employed to inte-
grate the visual sensing system with the navigation system to
realize high-level command and control, such as the flocking
mission, based on the structure illustrated in Fig. 2. Software
integration has been implemented by using a middleware: robot
operating system (ROS) due to its good modularity and con-
current resource handling. The aforementioned algorithms have
been implemented in individual ROS nodes, and standardized
messages have been used among those nodes.
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Fig. 9. Precision performance for the (a) Indoor1 (thermal) and (b) Indoor2 (visible). (c) Precision experiment for Outdoor. First row shows the
overlap rate precision and the second row presents the center error precision.

The waypoints are predefined in the initial stage and only the
team leader knows its task information. On the other hand, a
follower tracks its leader and dynamically plans its path for the
tandem flocking. Initially, UAVs take off 3 m apart and with
1.5 m height. Their distance intervals range from 3 to 8 m dur-
ing flight. The images captured by the on-board cameras are
normalized with resolution of 382× 288. The cameras are cal-
ibrated in advance for target state estimation and also stabilized
by using gimbals.

A. Visual Tracking

In this system, visual sensing is used to measure the motion
status of the leader UAV and aid the followers to track its cor-
responding leader’s steps. We apply our algorithm on thermal
and visible cameras, respectively. The communication model
will be activated only in case when the visual system fails to
detect the target status. Two rounds of indoor real flight with
thermal and day cameras are applied first, respectively, to verify
the performance of proposed vision system. Selected state-of-
art algorithms including TLD [12], CMT [25], CF2 [26], FCT
[27], and DAT [28], are applied for comparison.

The thermal experiment is conducted first and the flocking
scenario is shown in Fig. 8(b). The UAV team operates at an
indoor scene in size of 35× 35 m. All the UAVs are well ini-
tialized and followers detect the target automatically. The total
number of the frames is 3300 and the UAVs take off around the
Frame #1200. Tracking accuracy is evaluated using center error
and overlap ratio [29]. This experiment is shortened in Indoor1.

At the early stage of the experiment, the target stands on the
ground for a while before it takes off. All algorithms perform
well except DAT, which shrinks and drops tracking accuracy
significantly even when the target is static in an image. After
taken off, the flocking team flies straightly in 10 m to Waypoint
#1, followed with a left turn. DAT totally loses target at Frame
#1627. This is because DAT relies on a color feature which is
unstable in thermal images. Thermal camera provides a heat
distribution image of the environment and the object is recog-
nizable based on its contour. CF2 and FCT cannot present good
performance in overlap rate after the UAV takes off. It is un-
derstandable for CF2 because it does not consider scale change.
Although FCT tracks the scale of the target, it cannot give a
robust scale estimation when the target is far away from the

camera. As shown in Fig. 9(a), the proposed tracker, TLD, and
CMT are stable before the first turning corner at Frame #1910.

The leader turns left first at Waypoint #1, while followers fol-
low and enter a curve. For a fair evaluation, we set the overlap
rate and center error to optimal values when the target disap-
pears in this moment. Redetection of the proposed algorithm
is activated for target searching, and it recaptures the target at
Frame #1977. TLD, however, loses the target after two frames
tracking and it redetects the target at Frame #2080. It performs
very unstable from Frame #2080 to Frame #2600 and it repeats
the processing of tracking, losing, and redetection in this pe-
riod. Occasionally, TLD presents false positives because of the
attraction of outliers [see Fig. 10(a)]. The failure of TLD may
be caused by poor resolution of thermal images. In contrast,
the proposed algorithm performs very stable and robust because
of using contour-based multilevel-oriented gradient features and
the correlation filter. CMT recaptures the target at Frame #2622,
but cannot provide a good tracking, because keypoint-based
global matching may not be stable in thermal image. CF2 and
FCT lose target at the first turning corner. Even CF2 retracks
target by chance but it does not perform well in the rest of the
sequences.

A day camera has been employed in the second round under
the same scenario (Indoor2). As shown in Fig. 9(b), the UAV
team takes off at Frame #1090 and all the trackers keep tracking
before the leader disappears at Frame #1416. The proposed
algorithm can promptly recapture the target when the target
reappears in image and it is stable through the experiment. In
contrast, the other trackers cannot recover even the target is
reappearing. Among of them, TLD retracks the target at Frame
#1905, thanks to its detection module.

Additionally, we present a challenging outdoor experiment
with a day camera to further verify the effectiveness of the
proposed tracker, which is abbreviated as Outdoor conducted
in a small forest with size of 50× 50 m. In total, 5000 frames
have been collected with a resolution of 644 × 482. Because
of time limit, we only label frames with #5× and the final
labeled images are 1000. The experiment shows a scenario that
the UAVs fly in a forest. Since some trackers are designed for
local tracking, this experiment does not consider occlusion and
target disappearing even it is a false assumption in the practical
application. All the trackers are well-initialized. After taking
off, CF2 loses target at Frame #405 because it is attracted by
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Fig. 10. Representative image results of tracking for Indoor1, (first row), Indoor2 (second row), and Outdoor (third row). The proposed algorithm,
TLD, CMT, CF2, and FCT are in red, blue, magenta, cyan, and green, respectively. DAT is in magenta with dash line.

TABLE I
QUANTITATIVE RESULTS IN MEAN ERROR

the background with similar appearance to the target. CMT and
TLD also drift after Frame #428. FCT loses the target at Frame
#1167 because of the cluttered background. TLD retracks the
target at Frame #1260 using the redetection function. DAT keeps
tracking the target through the entire sequence. This experiment
is difficult because of very complicated background and various
illuminations in the forest. The proposed algorithm, however,
keeps a successful tracking with high overlap ratio because
the powerful integration of multilevel gradient features and the
correlation filter.

We also present a mean error in quantitative results as shown
in Table I. The best and second results are reported in bold and
underline. It can be observed that the proposed tracker achieves
the best performance and significantly outperforms the other
algorithms in terms of center error and overlap rate. The TLD
obtains the second place in experiment. It is noted that the DAT
has the best score at Outdoor in center error. However, the
DAT is only third in performance in overlap rate at Outdoor. In
contrast, the proposed tracker has the best and the second score
in overlap rate and center error, respectively, and it outperforms
DAT significantly in terms of overlap rate at Outdoor.

B. Environment Exploring

Different logics have been applied to the leader and the fol-
lowers for navigation and obstacle avoidance. The leader will

follow the predefined waypoints and avoid obstacles along the
online generated trajectory simultaneously. Waypoints for the
followers will be generated dynamically in terms of the mea-
sured target position, which may not be stable for the online
trajectory generation sometime. Therefore, we propose an alter-
native solution: 1) store all the positions of the leader with time
stamps in memory; 2) find a suitable point from these positions,
and make sure the distance between this point and the leader
is 3 m at least. If such a point does not exist, choose second
safe point based on leader’s moving direction; and 3) monitor
the position of the leader from image measurement and SLAM
estimation via communication. If camera tracking is failed, we
switch to the SLAM estimation, but tracking error may drift
over time.

A cost occupancy grid map will be created from laser scan
data, and then a path will be computed by using the A* algo-
rithm. To meet the dynamic motion constraints of the UAVs, the
reflexxes library is used to generate a time optimal and smooth
trajectory based on the path. Every 0.02 s, the generated trajec-
tory reference will be sent to the flight controller to realize the
closed-loop control.

Two flight tests have been conducted with visible and thermal
cameras, respectively. The flight trajectories are illustrated in
Fig. 8(b). Three UAVs are used for visible experiment. UAV #1
is the leader, and UAV #2 and #3 are the followers, with origin
points (7, 0), (3.5, 0), and (0, 0). Two UAVs are used for the
thermal experiment with leader UAV #1 and follower UAV #T2,
and their starting points are (7, 0) and (3.5, 0).

Fig. 11(a) shows the performance of UAV #1. As it just fol-
lowed the preplanned waypoints and did not consider the other
two UAVs’ positions, its trajectory fits the straight lines between
the waypoints perfectly. From the quality of map alignment, the
SLAM algorithm for UAV #1 also performs great. While for the
result of UAV #2 and #3 in Fig. 11(b) and (c), the SLAM has
drifted. That is mainly because the other moving UAVs inter-
fered with the feature-based scan matching. To make sure the
safety of whole system in the case of vision tracking failure
or having a large error, path planning compares the position
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Fig. 11. (a) Trajectory of UAV #1 in test 1. (b) Trajectory of UAV #2 with a visible camera in test 1. (c) Trajectory of UAV #3 with a visible camera in
test 1. (d) Trajectory of UAV #T2 with a thermal camera in test 2. (e) x-axis position of UAV #3. (f) y-axis position of UAV #3.

difference between the vision tracking result and the leader’s
broadcasting SLAM data. If the difference is too large, in our
case, the max tolerance error is 1.41 m, the algorithm will trust
the latter one. In fact, vision tracking displays very stable per-
formance if the target presents the images. While the target was
turning around a pillar, it might be blocked. The vision track-
ing would not get any valid information and then fail. From
Fig. 11(b), (c), and (d), we can see that the vision tracking tra-
jectories are discontinued, because the target is hidden behind
obstacles or out of field of views of the cameras, when UAVs
are turning around the obstacles. For this case, our algorithm
will switch to leader’s SLAM guidance.

The capability of collision avoidance between moving
UAVs is shown in Fig. 11(e) and (f), where SLAM line
can be considered as the measured position of the UAV
and the lines of vision tracking and UAV #2 broadcast-
ing are both target reference positions. In other words,
UAV #3 has two channels information of its target UAV #3
from measure of the camera and broadcasting. Path planning
line shows the final reference trajectory for UAV #3, which
is sent to the outer-loop of the flight control system. In this
experiment, UAV #3 tries to step back to keep a 3 m distance
from UAV #2 during 160–175 s. All the UAVs take off at about
145 s, and UAV #2 went to (5, 0) first around 159 s and then fell
back to (3.5, 0) around 165 s. Note that the broadcast position of
UAV #2 has a delay because of the heavy communication load.
UAV #3 detects this issue by the vision tracking first. In this
case, the path planning algorithm trusted the vision tracking
result instead of UAV #2 broadcasting, because their difference
is small. At around 167 s, the path planning algorithm chose a
safe position in both in x- and y-axis [from (2, 0.5) to (0.5, 0)]

to avoid collision. Based on this experiment, it can be proven
that visual tracking is effective and reliable to maintain safe
flight for UAV flocking. Another issue needed to note is that
the maps in Fig. 11(a) to (d) are generated online, which means
dynamic obstacles and outliers are also shown here. So it is
reasonable that the paths pass through the obstacles in the map.

Those real flight experiments have successfully verified the
effectiveness of the developed flocking system including sophis-
ticated algorithms, such as vision tracking, SLAM, and path
planning. All of the algorithms are processed in an on-board
computer with i7-3612QE (4 × 2.1 GHz) CPU and 4G RAM
running in Ubuntu 14.04. To balance the performance of those
computational intensive algorithms, the frequency of laser scan
is limited to 20 Hz, so that all the algorithms can run in full speed
(SLAM, 3-D mapping, path planning, and visual tracker are run-
ning at 20, 20, 10, and 25 Hz, respectively) without overload.

VI. CONCLUSION

In this paper, we presented a sophisticated flocking system,
which successfully integrated various advanced technologies,
including LiDAR-based SLAM, and a visual system for sens-
ing in both day and night without continuous wireless com-
munication and GPS signals that are required in traditional
flocking systems. To address the enhanced visual sensing, a
multichannel correlation filter based visual algorithm was de-
veloped for the robust tracking in thermal and visible visions.
Enhanced tracking-learning-detection fashion was proposed for
long-term robust visual tracking. Environment understanding
and path planning modules were implemented for autonomous
task operation. The experiments at indoor and outdoor scenarios
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verified the effectiveness of the proposed visual algorithm for
challenging practical applications.

The developed flocking system realized a prototype of multi-
UAV autonomous flight. For practical applications in future, we
are going to further optimize the system performance, including
increasing the flight speed and enhancing SLAM capabilities by
using 3-D sensing, etc.
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